1.简述
并发通过管理多个任务的执行顺序,确保系统在高负载下仍能保持响应性;并行则利用多处理器或多核心硬件,真正同时执行任务,以加速计算。这两者在高性能计算、实时系统和用户交互应用中发挥着不可替代的作用。
在多核处理器时代,传统串行编程已无法充分利用硬件潜力。并行计算通过将任务分解到多个核心执行,显著缩短了计算时间。然而,并发与并行的实现并非没有代价,它们引入了诸如竞争条件、死锁和负载均衡等复杂问题,需要开发者具备深厚的理论基础和实践经验。
2.并发与并行
2.1 定义
- 并发(Concurrency): - 指系统在一段时间内管理多个任务的能力。并发关注任务的协调与交错执行,通过时间分片等技术在一个或多个处理器上实现,因此并发看似同时进行,但不一定在同一时刻执行。
- 并发强调任务的逻辑组织和协调。
- 举例:一个Web服务器可以并发处理多个客户端请求,通过快速切换任务确保每个请求都能及时响应。
 
- 并行(Parallelism): - 指多个任务在同一时刻真正同时执行,通常依赖于多核处理器或分布式系统。其核心目标是提升计算速度,通过将问题分解为独立的子任务并同时处理。并行适用于计算密集型任务。
- 并行关注物理执行的并行性。
- 举例:在并行矩阵乘法中,不同的核心可以同时计算矩阵的不同部分,从而显著缩短总计算时间;科学模拟或图像处理,其效果依赖于多核处理器、GPU或分布式计算系统的硬件支持。
 
2.2 区别

并发与并行的根本区别在于执行的时间性和资源依赖性:
- 执行模式:并行强调真正的同时执行,而并发通过任务切换营造同时进行的假象。
- 硬件依赖:并行需要多处理器或多核心支持,而并发在单核系统上即可实现。
- 目标:并行旨在加速计算,而并发注重系统响应性和多任务处理能力。
例如,在单核系统中,操作系统通过时间片轮转调度多个线程;而多核系统中,线程可以分配到不同核心并行运行。
3.实现并发
3.1 并行实现并发
在多核处理器上,任务可以分配到不同核心并行执行,从而实现高效并发。例如,Web服务器通过多线程并行处理客户端请求。
代码示例:多线程并行处理 :System.Threading.ThreadPool来创建和管理线程池,并使用ManualResetEventSlim来等待所有任务完成。
	using System;
	using System.Collections.Generic;
	using System.Threading;
	class Program
	{
		static void Main(string[] args)
		{
			List<Request> requests = new List<Request>
			{
				new Request { Data = "Request1" },
				new Request { Data = "Request2" },
				new Request { Data = "Request3" }
				
			};
			process_requests(requests);
			Console.WriteLine("All requests processed.");
		}
		static void process_requests(List<Request> requests)
		{
			int num_cores = Environment.ProcessorCount;  
			ManualResetEventSlim[] mres = new ManualResetEventSlim[requests.Count];  
			for (int i = 0; i < requests.Count; i++)
			{
				int index = i;
				mres[index] = new ManualResetEventSlim(false);  
				ThreadPool.QueueUserWorkItem((state) =>
				{
					handle_request(requests[index]);
					mres[index].Set();  
				});
			}
			
			ManualResetEventSlim.WaitAll(mres);
		}
		static void handle_request(Request request)
		{
			Response response = process(request);  
			send_response(response);  
		}
		static Response process(Request request)
		{
			
			Console.WriteLine($"Processing request: {request.Data}");
			Thread.Sleep(1000);  
			return new Response { Data = $"Response for {request.Data}" };
		}
		static void send_response(Response response)
		{
			
			Console.WriteLine($"Sending response: {response.Data}");
		}
	}
	class Request
	{
		public string Data { get; set; }
	}
	class Response
	{
		public string Data { get; set; }
	}
======================================================================================================================
使用Task.Run和Task.WhenAll来实现
	using System;
	using System.Collections.Generic;
	using System.Threading.Tasks;
	class Program
	{
		static async Task Main(string[] args)
		{
			List<Request> requests = new List<Request>
			{
				new Request { Data = "Request1" },
				new Request { Data = "Request2" },
				new Request { Data = "Request3" }
				
			};
			await process_requests(requests);
			Console.WriteLine("All requests processed.");
		}
		static async Task process_requests(List<Request> requests)
		{
			List<Task> tasks = new List<Task>();
			foreach (Request request in requests)
			{
				Task task = Task.Run(() => handle_request(request));
				tasks.Add(task);
			}
			
			await Task.WhenAll(tasks);
		}
		static async Task handle_request(Request request)
		{
			Response response = await process(request);  
			send_response(response);  
		}
		static async Task<Response> process(Request request)
		{
			
			Console.WriteLine($"Processing request: {request.Data}");
			await Task.Delay(1000);  
			return new Response { Data = $"Response for {request.Data}" };
		}
		static void send_response(Response response)
		{
			
			Console.WriteLine($"Sending response: {response.Data}");
		}
	}
	class Request
	{
		public string Data { get; set; }
	}
	class Response
	{
		public string Data { get; set; }
	}
3.2 任务调度
在单核处理器上,通过时间片轮转等调度算法实现并发。操作系统在任务间快速切换,营造同时执行的假象。
代码示例:时间片轮转调度 :示例使用了Task和CancellationToken来管理任务的时间片轮转调度。
	using System;
	using System.Collections.Generic;
	using System.Threading;
	using System.Threading.Tasks;
	class Program
	{
		static async Task Main(string[] args)
		{
			List<Task> tasks = new List<Task>
			{
				run_task("Task1", 5000),  
				run_task("Task2", 3000),  
				run_task("Task3", 7000)   
			};
			int time_slice = 1000;  
			await scheduler(tasks, time_slice);
			Console.WriteLine("All tasks processed.");
		}
		static async Task scheduler(List<Task> tasks, int time_slice)
		{
			List<Task> runningTasks = new List<Task>();
			List<Task> remainingTasks = new List<Task>(tasks);
			while (remainingTasks.Count > 0 || runningTasks.Count > 0)
			{
				
				if (remainingTasks.Count > 0)
				{
					runningTasks.Add(remainingTasks[0]);
					remainingTasks.RemoveAt(0);
				}
				
				List<Task> currentRunningTasks = new List<Task>(runningTasks);
				foreach (Task task in currentRunningTasks)
				{
					if (!task.IsCompleted)
					{
						await run_task_for_time_slice(task, time_slice);
						if (task.IsCompleted)
						{
							runningTasks.Remove(task);
						}
						else
						{
							remainingTasks.Add(task);
							runningTasks.Remove(task);
						}
					}
				}
			}
		}
		static async Task run_task_for_time_slice(Task task, int time_slice)
		{
			
			CancellationTokenSource cts = new CancellationTokenSource(time_slice);
			try
			{
				
				await task.WaitAsync(cts.Token);
			}
			catch (TaskCanceledException)
			{
				
				Console.WriteLine($"Task {task.Id} preempted after {time_slice} ms");
			}
		}
		static Task run_task(string taskName, int total_time)
		{
			return Task.Run(async () =>
			{
				int elapsedTime = 0;
				int time_slice = 1000;  
				while (elapsedTime < total_time)
				{
					Console.WriteLine($"{taskName} is running. Elapsed time: {elapsedTime} ms");
					await Task.Delay(time_slice);  
					elapsedTime += time_slice;
				}
				Console.WriteLine($"{taskName} is completed.");
			});
		}
	}
3.3 多线程
多线程通过创建多个执行单元实现并发。线程共享进程资源,通过同步机制(如互斥锁)协调访问。
代码示例:多线程同步
	using System;
	using System.Collections.Generic;
	using System.Threading;
	using System.Threading.Tasks;
	namespace Test.EventBus
	{
		public class DemoB
		{
			private static Mutex mutex = new Mutex();  
			private static StringBuilder sharedData = new StringBuilder();  
			public void ShowMsg(string name, string msg)
			{
				Console.WriteLine($"ShowMsg=> name:{name},msg:{msg}");
				var eventMsg = new EventMessage
				{
					Name = name,
					Msg = msg,
					CreatedDate = DateTime.Now
				};
				EventPublishSubscribeUtils.PublishEvent(eventMsg, nameof(DemoB.ShowMsg));
			}
			public static void RunDemo()
			{
				List<Task> tasks = new List<Task>();
				for (int i = 0; i < 10; i++)
				{
					int taskId = i;
					tasks.Add(Task.Run(() => thread_function($"Task{taskId}")));
				}
				
				Task.WaitAll(tasks);
			}
			static void thread_function(string name)
			{
				for (int i = 0; i < 5; i++)
				{
					modify_shared_data(name, i);
				}
			}
			static void modify_shared_data(string name, int iteration)
			{
				mutex.WaitOne();  
				try
				{
					
					sharedData.AppendLine($"{name} is modifying shared data at iteration {iteration} on {DateTime.Now}");
					Console.WriteLine($"{name} is modifying shared data at iteration {iteration} on {DateTime.Now}");
				}
				finally
				{
					mutex.ReleaseMutex();  
				}
			}
		}
		public class EventMessage
		{
			public string Name { get; set; }
			public string Msg { get; set; }
			public DateTime CreatedDate { get; set; }
		}
		public static class EventPublishSubscribeUtils
		{
			public static void PublishEvent(EventMessage eventMsg, string eventName)
			{
				Console.WriteLine($"Published event: {eventName} => Name: {eventMsg.Name}, Msg: {eventMsg.Msg}, CreatedDate: {eventMsg.CreatedDate}");
			}
		}
		class Program
		{
			static void Main(string[] args)
			{
				DemoB.RunDemo();
				Console.WriteLine("All threads completed.");
			}
		}
	}
3.4 异步编程
异步编程通过事件循环和回调函数处理I/O密集型任务,避免阻塞主线程。
代码示例:异步I/O
using System;
using System.IO;
using System.Threading.Tasks;
namespace AsyncIOExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			string filePath1 = "example1.txt";
			string filePath2 = "example2.txt";
			
			File.WriteAllText(filePath1, "Data from example1.txt");
			File.WriteAllText(filePath2, "Data from example2.txt");
			
			await async_read(filePath1, data => callback(data, filePath1));
			await async_read(filePath2, data => callback(data, filePath2));
			Console.WriteLine("All asynchronous read operations completed.");
		}
		static async Task async_read(string file, Action<string> callback)
		{
			
			Console.WriteLine($"Starting asynchronous read for file: {file}");
			string data = await read_file(file);
			callback(data);
		}
		static async Task<string> read_file(string file)
		{
			
			using (StreamReader reader = new StreamReader(file))
			{
				string data = await reader.ReadToEndAsync();
				return data;
			}
		}
		static void callback(string data, string file)
		{
			
			Console.WriteLine($"Data read from {file}: {data}");
		}
	}
}
3.5 协程
协程通过yield和resume机制在单线程内实现并发,适用于I/O密集型任务,具有低开销优势。
代码示例:协程
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace CoroutineExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			IAsyncEnumerable<string> coroutine = coroutine_example();
			
			IAsyncEnumerator<string> enumerator = coroutine.GetAsyncEnumerator();
			
			if (await enumerator.MoveNextAsync())
			{
				Console.WriteLine("Coroutine started.");
				
				await enumerator.MoveNextAsync();
				enumerator.Current = "Data1";
				await enumerator.MoveNextAsync();
				enumerator.Current = "Data2";
				await enumerator.MoveNextAsync();
				enumerator.Current = "Data3";
				
				await enumerator.DisposeAsync();
			}
		}
		static async IAsyncEnumerable<string> coroutine_example()
		{
			string data = null;
			while (true)
			{
				
				await Task.Delay(100);  
				data = yield return data;
				
				process(data);
			}
		}
		static void process(string data)
		{
			if (data != null)
			{
				Console.WriteLine($"Processed data: {data}");
			}
			else
			{
				Console.WriteLine("No data to process.");
			}
		}
	}
}
3.6 事件驱动
事件驱动编程通过事件循环监听和处理事件,适用于GUI和网络应用。
代码示例:事件驱动
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace EventDrivenExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			
			EventLoop eventLoop = new EventLoop();
			
			eventLoop.RegisterHandler("Event1", Event1Handler);
			eventLoop.RegisterHandler("Event2", Event2Handler);
			
			eventLoop.TriggerEvent(new Event { Type = "Event1", Data = "Data for Event1" });
			eventLoop.TriggerEvent(new Event { Type = "Event2", Data = "Data for Event2" });
			
			await eventLoop.Start();
			Console.WriteLine("Event loop completed.");
		}
		static void Event1Handler(Event e)
		{
			Console.WriteLine($"Handling {e.Type} with data: {e.Data}");
		}
		static void Event2Handler(Event e)
		{
			Console.WriteLine($"Handling {e.Type} with data: {e.Data}");
		}
	}
	public class Event
	{
		public string Type { get; set; }
		public string Data { get; set; }
	}
	public class EventLoop
	{
		private Queue<Event> _eventQueue = new Queue<Event>();
		private Dictionary<string, Action<Event>> _handlers = new Dictionary<string, Action<Event>>();
		private bool _running = false;
		public void RegisterHandler(string eventType, Action<Event> handler)
		{
			if (_handlers.ContainsKey(eventType))
			{
				_handlers[eventType] += handler;
			}
			else
			{
				_handlers[eventType] = handler;
			}
		}
		public void TriggerEvent(Event e)
		{
			lock (_eventQueue)
			{
				_eventQueue.Enqueue(e);
			}
		}
		public async Task Start()
		{
			_running = true;
			while (_running)
			{
				Event e = null;
				lock (_eventQueue)
				{
					if (_eventQueue.Count > 0)
					{
						e = _eventQueue.Dequeue();
					}
				}
				if (e != null)
				{
					if (_handlers.TryGetValue(e.Type, out Action<Event> handler))
					{
						handler(e);
					}
					else
					{
						Console.WriteLine($"No handler registered for event type: {e.Type}");
					}
				}
				else
				{
					
					await Task.Delay(100);  
				}
			}
		}
		public void Stop()
		{
			_running = false;
		}
	}
}
3.7 多进程
多进程通过创建独立进程实现并发,进程间通过IPC(如管道或消息队列)通信,适用于CPU密集型任务
在C#中,多进程可以通过使用 System.Diagnostics.Process 类来创建和管理独立进程。进程间通信(IPC)可以通过多种方式实现,例如使用命名管道(System.IO.Pipes)或内存映射文件(System.IO.MemoryMappedFiles)。在这个示例中,我们将使用命名管道来进行进程间通信。
代码示例:多进程
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO.Pipes;
using System.Text;
using System.Threading.Tasks;
namespace MultiProcessExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			int num_processes = 3;  
			List<Process> processes = new List<Process>();
			List<Task<string>> readTasks = new List<Task<string>>();
			
			var server = new NamedPipeServerStream("testpipe", PipeDirection.In, num_processes, PipeTransmissionMode.Message, PipeOptions.Asynchronous);
			
			for (int i = 0; i < num_processes; i++)
			{
				Process p = new Process();
				p.StartInfo.FileName = "dotnet";
				p.StartInfo.Arguments = $"MultiProcessExample.dll worker {i}";
				p.StartInfo.UseShellExecute = false;
				p.StartInfo.RedirectStandardOutput = true;
				p.StartInfo.CreateNoWindow = true;
				p.Start();
				processes.Add(p);
				
				readTasks.Add(Task.Run(() => read_from_process(p)));
			}
			
			foreach (var process in processes)
			{
				process.WaitForExit();
			}
			
			string[] results = await Task.WhenAll(readTasks);
			
			foreach (var result in results)
			{
				Console.WriteLine($"Received result: {result}");
			}
			
			server.Close();
		}
		static string read_from_process(Process process)
		{
			
			string result = process.StandardOutput.ReadToEnd();
			return result;
		}
	}
	class Worker
	{
		static async Task Main(string[] args)
		{
			if (args.Length != 2 || args[0] != "worker" || !int.TryParse(args[1], out int id))
			{
				Console.WriteLine("Invalid arguments.");
				return;
			}
			
			using (NamedPipeClientStream pipeClient = new NamedPipeClientStream(".", "testpipe", PipeDirection.Out, PipeOptions.Asynchronous))
			{
				try
				{
					
					await pipeClient.ConnectAsync();
					
					string result = compute(id);
					
					send_result(pipeClient, result);
				}
				catch (Exception ex)
				{
					Console.WriteLine($"Error: {ex.Message}");
				}
			}
		}
		static string compute(int id)
		{
			
			Console.WriteLine($"Worker {id} is computing...");
			Task.Delay(1000).Wait();  
			return $"Result from Worker {id}";
		}
		static void send_result(NamedPipeClientStream pipeClient, string result)
		{
			try
			{
				
				byte[] resultBytes = Encoding.UTF8.GetBytes(result);
				pipeClient.Write(resultBytes, 0, resultBytes.Length);
				pipeClient.Flush();
			}
			catch (Exception ex)
			{
				Console.WriteLine($"Error sending result: {ex.Message}");
			}
		}
	}
}
4.实现并行的技术
4.1 多线程(Multithreading)
多线程通过在单个或多个处理器核心上运行多个线程来实现并行。在多核处理器上,线程可以真正并行执行;在单核处理器上,通过时间片切换实现伪并行。多线程适用于I/O密集型和计算密集型任务,能提高资源利用率和程序响应速度。
代码示例::使用了System.Threading.Thread来创建和管理多个线程,并使用Task来提交和等待任务的完成。
	using System;
	using System.Collections.Generic;
	using System.Threading;
	using System.Threading.Tasks;
	namespace MultiThreadExample
	{
		class Program
		{
			static void Main(string[] args)
			{
				int N = 3;  
				List<Thread> threads = new List<Thread>();
				List<string> results = new List<string>();
				object lockObject = new object();  
				
				for (int i = 0; i < N; i++)
				{
					int id = i;
					Thread thread = new Thread(() => task_function(id, results, lockObject));
					threads.Add(thread);
					thread.Start();
				}
				
				foreach (Thread thread in threads)
				{
					thread.Join();
				}
				
				foreach (string result in results)
				{
					Console.WriteLine($"Result from thread: {result}");
				}
				Console.WriteLine("All threads completed.");
			}
			static void task_function(int id, List<string> results, object lockObject)
			{
				string result = perform_task(id);  
				lock (lockObject)
				{
					results.Add(result);  
				}
			}
			static string perform_task(int id)
			{
				
				Console.WriteLine($"Thread {id} is processing.");
				Thread.Sleep(1000);  
				return $"Result from Thread {id}";
			}
		}
	}
使用 Task 和 async/await 实现:
	using System;
	using System.Collections.Generic;
	using System.Threading.Tasks;
	namespace MultiThreadExample
	{
		class Program
		{
			static async Task Main(string[] args)
			{
				int N = 3;  
				List<Task<string>> tasks = new List<Task<string>>();
				
				for (int i = 0; i < N; i++)
				{
					int id = i;
					Task<string> task = Task.Run(() => task_function(id));
					tasks.Add(task);
				}
				
				string[] results = await Task.WhenAll(tasks);
				
				foreach (string result in results)
				{
					Console.WriteLine($"Result from task: {result}");
				}
				Console.WriteLine("All tasks completed.");
			}
			static string task_function(int id)
			{
				string result = perform_task(id);  
				return result;
			}
			static string perform_task(int id)
			{
				
				Console.WriteLine($"Task {id} is processing.");
				Task.Delay(1000).Wait();  
				return $"Result from Task {id}";
			}
		}
	}
4.2 多进程(Multiprocessing)
多进程通过创建多个独立进程实现并行,每个进程运行在不同的处理器核心上。进程间通过管道或消息队列等通信机制协调工作。多进程适用于需要高隔离性和安全性的任务,如科学计算和服务器应用。
代码示例::
	using System;
	using System.Collections.Generic;
	using System.Diagnostics;
	using System.IO.Pipes;
	using System.Text;
	using System.Threading.Tasks;
	namespace MultiProcessExample
	{
		class Program
		{
			static async Task Main(string[] args)
			{
				int N = 3;  
				List<Process> processes = new List<Process>();
				List<Task<string>> readTasks = new List<Task<string>>();
				
				using (NamedPipeServerStream pipeServer = new NamedPipeServerStream("testpipe", PipeDirection.In, N, PipeTransmissionMode.Message, PipeOptions.Asynchronous))
				{
					
					for (int i = 0; i < N; i++)
					{
						Process process = create_process(i);
						processes.Add(process);
						process.Start();
						
						readTasks.Add(Task.Run(() => read_from_pipe(pipeServer)));
					}
					
					foreach (var process in processes)
					{
						process.WaitForExit();
					}
					
					string[] results = await Task.WhenAll(readTasks);
					
					foreach (var result in results)
					{
						Console.WriteLine($"Received result: {result}");
					}
					
					pipeServer.Close();
				}
				Console.WriteLine("All processes completed.");
			}
			static Process create_process(int id)
			{
				Process process = new Process();
				process.StartInfo.FileName = "dotnet";
				process.StartInfo.Arguments = $"MultiProcessExample.dll worker {id}";
				process.StartInfo.UseShellExecute = false;
				process.StartInfo.RedirectStandardOutput = true;
				process.StartInfo.CreateNoWindow = true;
				return process;
			}
			static async Task<string> read_from_pipe(NamedPipeServerStream pipeServer)
			{
				
				await pipeServer.WaitForConnectionAsync();
				
				byte[] buffer = new byte[1024];
				int bytesRead = await pipeServer.ReadAsync(buffer, 0, buffer.Length);
				string result = Encoding.UTF8.GetString(buffer, 0, bytesRead);
				
				pipeServer.Disconnect();
				return result;
			}
		}
	}
**使用Worker类:
**
	using System;
	using System.IO.Pipes;
	using System.Threading.Tasks;
	namespace MultiProcessExample
	{
		class Worker
		{
			static async Task Main(string[] args)
			{
				if (args.Length != 2 || args[0] != "worker" || !int.TryParse(args[1], out int id))
				{
					Console.WriteLine("Invalid arguments.");
					return;
				}
				
				using (NamedPipeClientStream pipeClient = new NamedPipeClientStream(".", "testpipe", PipeDirection.Out, PipeOptions.Asynchronous))
				{
					try
					{
						
						await pipeClient.ConnectAsync();
						
						string result = compute(id);
						
						send_result(pipeClient, result);
					}
					catch (Exception ex)
					{
						Console.WriteLine($"Error: {ex.Message}");
					}
				}
			}
			static string compute(int id)
			{
				
				Console.WriteLine($"Worker {id} is computing...");
				Task.Delay(1000).Wait();  
				return $"Result from Worker {id}";
			}
			static void send_result(NamedPipeClientStream pipeClient, string result)
			{
				try
				{
					
					byte[] resultBytes = Encoding.UTF8.GetBytes(result);
					pipeClient.Write(resultBytes, 0, resultBytes.Length);
					pipeClient.Flush();
				}
				catch (Exception ex)
				{
					Console.WriteLine($"Error sending result: {ex.Message}");
				}
			}
		}
	}
4.3 分布式计算(Distributed Computing)
分布式计算将任务分配到网络中的多台计算机上并行执行,通常使用消息传递接口(MPI)进行通信。适用于大规模数据处理和复杂计算任务,如天气预报和分布式数据库。
为了简化实现,我们可以使用一个简单的消息传递库,例如 NamedPipes 和 Task 来模拟MPI的行为。这里我们使用 NamedPipes 来进行进程间通信,并模拟主节点和工作节点之间的数据交换。
代码示例:
	using System;
	using System.Collections.Generic;
	using System.Diagnostics;
	using System.IO.Pipes;
	using System.Text;
	using System.Threading.Tasks;
	namespace DistributedComputingExample
	{
		class Program
		{
			static async Task Main(string[] args)
			{
				int num_workers = 3;  
				List<Process> workers = new List<Process>();
				List<Task<string>> readTasks = new List<Task<string>>();
				
				for (int i = 1; i <= num_workers; i++)
				{
					Process worker = create_worker_process(i);
					workers.Add(worker);
					worker.Start();
				}
				
				if (args.Length == 0 || args[0] != "worker")
				{
					
					string data = load_data(num_workers);
					Console.WriteLine("Data loaded.");
					
					List<NamedPipeServerStream> sendPipes = new List<NamedPipeServerStream>();
					for (int i = 1; i <= num_workers; i++)
					{
						NamedPipeServerStream sendPipe = new NamedPipeServerStream($"sendpipe_{i}", PipeDirection.Out, 1, PipeTransmissionMode.Message, PipeOptions.Asynchronous);
						sendPipes.Add(sendPipe);
					}
					
					for (int i = 1; i <= num_workers; i++)
					{
						string data_chunk = data.Split('|')[i - 1];
						send_data(sendPipes[i - 1], data_chunk);
					}
					
					List<NamedPipeServerStream> receivePipes = new List<NamedPipeServerStream>();
					for (int i = 1; i <= num_workers; i++)
					{
						NamedPipeServerStream receivePipe = new NamedPipeServerStream($"receivepipe_{i}", PipeDirection.In, 1, PipeTransmissionMode.Message, PipeOptions.Asynchronous);
						receivePipes.Add(receivePipe);
					}
					
					for (int i = 1; i <= num_workers; i++)
					{
						readTasks.Add(Task.Run(() => read_from_pipe(receivePipes[i - 1])));
					}
					
					foreach (var worker in workers)
					{
						worker.WaitForExit();
					}
					
					string[] results = await Task.WhenAll(readTasks);
					
					string final_result = aggregate(results);
					Console.WriteLine($"Final result: {final_result}");
				}
				else
				{
					
					int id = int.Parse(args[1]);
					Console.WriteLine($"Worker {id} started.");
					
					using (NamedPipeClientStream receivePipe = new NamedPipeClientStream(".", $"sendpipe_{id}", PipeDirection.In, PipeOptions.Asynchronous))
					{
						await receivePipe.ConnectAsync();
						string data_chunk = receive_data(receivePipe);
						Console.WriteLine($"Worker {id} received data: {data_chunk}");
						
						string result = process(data_chunk);
						Console.WriteLine($"Worker {id} processed data: {result}");
						
						using (NamedPipeClientStream sendPipe = new NamedPipeClientStream(".", $"receivepipe_{id}", PipeDirection.Out, PipeOptions.Asynchronous))
						{
							await sendPipe.ConnectAsync();
							send_result(sendPipe, result);
						}
					}
				}
			}
			static Process create_worker_process(int id)
			{
				Process process = new Process();
				process.StartInfo.FileName = "dotnet";
				process.StartInfo.Arguments = $"DistributedComputingExample.dll worker {id}";
				process.StartInfo.UseShellExecute = false;
				process.StartInfo.RedirectStandardOutput = true;
				process.StartInfo.CreateNoWindow = true;
				return process;
			}
			static string load_data(int num_chunks)
			{
				
				string data = "DataChunk1|DataChunk2|DataChunk3";
				return data;
			}
			static void send_data(NamedPipeServerStream pipe, string data)
			{
				try
				{
					byte[] dataBytes = Encoding.UTF8.GetBytes(data);
					pipe.Write(dataBytes, 0, dataBytes.Length);
					pipe.Flush();
					pipe.Disconnect();
				}
				catch (Exception ex)
				{
					Console.WriteLine($"Error sending data: {ex.Message}");
				}
			}
			static string receive_data(NamedPipeClientStream pipe)
			{
				try
				{
					byte[] buffer = new byte[1024];
					int bytesRead = pipe.Read(buffer, 0, buffer.Length);
					return Encoding.UTF8.GetString(buffer, 0, bytesRead);
				}
				catch (Exception ex)
				{
					Console.WriteLine($"Error receiving data: {ex.Message}");
					return null;
				}
			}
			static string process(string data_chunk)
			{
				
				Console.WriteLine($"Processing data chunk: {data_chunk}");
				Task.Delay(1000).Wait();  
				return $"Processed {data_chunk}";
			}
			static void send_result(NamedPipeClientStream pipe, string result)
			{
				try
				{
					byte[] resultBytes = Encoding.UTF8.GetBytes(result);
					pipe.Write(resultBytes, 0, resultBytes.Length);
					pipe.Flush();
				}
				catch (Exception ex)
				{
					Console.WriteLine($"Error sending result: {ex.Message}");
				}
			}
			static async Task<string> read_from_pipe(NamedPipeServerStream pipe)
			{
				await pipe.WaitForConnectionAsync();
				byte[] buffer = new byte[1024];
				int bytesRead = await pipe.ReadAsync(buffer, 0, buffer.Length);
				string result = Encoding.UTF8.GetString(buffer, 0, bytesRead);
				pipe.Disconnect();
				return result;
			}
			static string aggregate(string[] results)
			{
				
				StringBuilder finalResult = new StringBuilder();
				foreach (string result in results)
				{
					finalResult.AppendLine(result);
				}
				return finalResult.ToString();
			}
		}
	}
===================================================================
使用第三方MPI库
安装MPI库:
安装 OpenMPI 或 Microsoft MPI。
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using MPI;
namespace DistributedComputingExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			await MPI.StartMain(DistributedMain, args);
		}
		static async Task DistributedMain(string[] args)
		{
			int rank = MPI.Communicator.world.Rank;
			int size = MPI.Communicator.world.Size;
			if (rank == 0)
			{
				
				string data = load_data(size);
				Console.WriteLine("Data loaded.");
				
				for (int i = 1; i < size; i++)
				{
					string data_chunk = data.Split('|')[i - 1];
					send_data(data_chunk, i);
				}
				
				List<string> results = new List<string>();
				for (int i = 1; i < size; i++)
				{
					string result = receive_result(i);
					results.Add(result);
				}
				
				string final_result = aggregate(results);
				Console.WriteLine($"Final result: {final_result}");
			}
			else
			{
				
				string data_chunk = receive_data(0);
				Console.WriteLine($"Worker {rank} received data: {data_chunk}");
				
				string result = process(data_chunk);
				Console.WriteLine($"Worker {rank} processed data: {result}");
				
				send_result(result, 0);
			}
		}
		static string load_data(int num_chunks)
		{
			
			string data = "DataChunk1|DataChunk2|DataChunk3";
			return data;
		}
		static void send_data(string data, int destination)
		{
			byte[] dataBytes = Encoding.UTF8.GetBytes(data);
			MPI.Communicator.world.Send(dataBytes, dataBytes.Length, destination, 0);
		}
		static string receive_data(int source)
		{
			int msgSize = MPI.Communicator.world.Receive<int>(source, 0);
			byte[] buffer = new byte[msgSize];
			MPI.Communicator.world.Receive(buffer, msgSize, source, 0);
			return Encoding.UTF8.GetString(buffer);
		}
		static string process(string data_chunk)
		{
			
			Console.WriteLine($"Processing data chunk: {data_chunk}");
			Task.Delay(1000).Wait();  
			return $"Processed {data_chunk}";
		}
		static void send_result(string result, int destination)
		{
			byte[] resultBytes = Encoding.UTF8.GetBytes(result);
			MPI.Communicator.world.Send(resultBytes.Length, destination, 0);
			MPI.Communicator.world.Send(resultBytes, resultBytes.Length, destination, 0);
		}
		static string receive_result(int source)
		{
			int msgSize = MPI.Communicator.world.Receive<int>(source, 0);
			byte[] buffer = new byte[msgSize];
			MPI.Communicator.world.Receive(buffer, msgSize, source, 0);
			return Encoding.UTF8.GetString(buffer);
		}
		static string aggregate(List<string> results)
		{
			
			StringBuilder finalResult = new StringBuilder();
			foreach (string result in results)
			{
				finalResult.AppendLine(result);
			}
			return finalResult.ToString();
		}
	}
}
4.4 GPU并行计算
GPU并行计算利用图形处理单元(GPU)的多核心架构,通过CUDA或OpenCL等技术实现高度并行。适用于数据密集型任务,如图像处理和机器学习。
代码示例:
使用 CUDAfy.NET 实现GPU并行计算的示例。假设我们有一个简单的计算任务,每个线程处理一个输入元素并生成相应的输出元素。
安装 CUDAfy.NET
using System;
using Cudafy;
using Cudafy.Host;
using Cudafy.Translator;
namespace GpuParallelComputingExample
{
	class Program
	{
		static void Main(string[] args)
		{
			
			int[] input = { 1, 2, 3, 4, 5 };
			int[] output = new int[input.Length];
			
			GPGPU gpu = CudafyHost.GetDevice(eGPUType.Cuda);
			
			gpu.LoadModule(typeof(Program));
			
			GPGPUDeviceVariable<int> d_input = gpu.Allocate(input);
			GPGPUDeviceVariable<int> d_output = gpu.Allocate(output);
			
			gpu.CopyToDevice(input, d_input);
			gpu.CopyToDevice(output, d_output);
			
			gpu.LaunchNewKernel(d_input.Size, 1, gpu_kernel, d_input, d_output);
			
			gpu.CopyFromDevice(d_output, output);
			
			gpu.Synchronize();
			
			Console.WriteLine("Input: " + string.Join(", ", input));
			Console.WriteLine("Output: " + string.Join(", ", output));
			
			d_input.Free();
			d_output.Free();
			gpu.FreeAll();
		}
		[Cudafy]
		public static void gpu_kernel(GPGPUThread thread, int[] input, int[] output)
		{
			int tid = thread.threadIdx.x;  
			if (tid < input.Length)
			{
				output[tid] = compute(input[tid]);
			}
		}
		[Cudafy]
		public static int compute(int value)
		{
			
			return value * value;
		}
	}
}
如果你更倾向于使用OpenCL而不是CUDA,可以使用 Managed OpenCL 库。
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using ManagedOpenCL;
namespace GpuParallelComputingExample
{
	class Program
	{
		static void Main(string[] args)
		{
			
			int[] input = { 1, 2, 3, 4, 5 };
			int[] output = new int[input.Length];
			
			CLPlatform platform = CLPlatform.GetPlatformIDs()[0];
			CLDevice device = platform.GetDeviceIDs()[0];
			CLContext context = CLContext.CreateContext(new[] { device });
			CLCommandQueue queue = context.CreateCommandQueue(device, CLCommandQueueProperties.None);
			
			string kernelCode = @"
				__kernel void gpu_kernel(__global const int* input, __global int* output)
				{
					int tid = get_global_id(0);
					if (tid < get_global_size(0))
					{
						output[tid] = compute(input[tid]);
					}
				}
				int compute(int value)
				{
					return value * value;
				}
			";
			
			CLProgram program = context.CreateProgramWithSource(new[] { kernelCode });
			program.BuildProgram(new[] { device }, null, null, null);
			
			CLMemoryBuffer<int> d_input = context.CreateBuffer(CLMemoryFlags.CopyHostPtr, input);
			CLMemoryBuffer<int> d_output = context.CreateBuffer(CLMemoryFlags.WriteOnly, output.Length);
			
			CLKernel kernel = program.CreateKernel("gpu_kernel");
			kernel.SetMemoryArgument(0, d_input);
			kernel.SetMemoryArgument(1, d_output);
			
			queue.EnqueueNDRangeKernel(kernel, null, new[] { (long)input.Length }, null);
			
			queue.EnqueueReadBuffer(d_output, true, 0, output.Length, output);
			
			queue.Finish();
			
			Console.WriteLine("Input: " + string.Join(", ", input));
			Console.WriteLine("Output: " + string.Join(", ", output));
			
			d_input.Dispose();
			d_output.Dispose();
			queue.Dispose();
			program.Dispose();
			context.Dispose();
		}
	}
}
4.5 任务并行(Task Parallelism)
任务并行将一个大任务分解为多个独立子任务,并行执行这些子任务。适用于任务间依赖较少的场景,如编译器并行处理多个文件。
代码示例:
	using System;
	using System.Collections.Generic;
	using System.Threading.Tasks;
	namespace TaskParallelExample
	{
		class Program
		{
			static async Task Main(string[] args)
			{
				
				List<Task> tasks = new List<Task>
				{
					task1(),
					task2(),
					task3()
				};
				
				await Task.WhenAll(tasks);
				Console.WriteLine("All tasks completed.");
			}
			static async Task task1()
			{
				Console.WriteLine($"Task1 started on thread: {Thread.CurrentThread.ManagedThreadId}");
				
				await Task.Delay(1000);
				Console.WriteLine($"Task1 completed on thread: {Thread.CurrentThread.ManagedThreadId}");
			}
			static async Task task2()
			{
				Console.WriteLine($"Task2 started on thread: {Thread.CurrentThread.ManagedThreadId}");
				
				await Task.Delay(1000);
				Console.WriteLine($"Task2 completed on thread: {Thread.CurrentThread.ManagedThreadId}");
			}
			static async Task task3()
			{
				Console.WriteLine($"Task3 started on thread: {Thread.CurrentThread.ManagedThreadId}");
				
				await Task.Delay(1000);
				Console.WriteLine($"Task3 completed on thread: {Thread.CurrentThread.ManagedThreadId}");
			}
		}
	}
4.6 数据并行(Data Parallelism)
数据并行将数据分割成多个部分,每个部分由不同的处理器或线程并行处理。适用于矩阵运算和图像处理等数据密集型任务。
代码示例:
	using System;
	using System.Collections.Generic;
	using System.Linq;
	using System.Threading.Tasks;
	namespace DataParallelExample
	{
		class Program
		{
			static void Main(string[] args)
			{
				int N = 10;  
				List<int> input = Enumerable.Range(0, N).ToList();
				int[] output = new int[N];
				
				Parallel.ForEach(input, (i, loopState) =>
				{
					output[i] = compute(i);
					Console.WriteLine($"Processed element {i} on thread: {Task.CurrentId}");
				});
				
				Console.WriteLine("Input: " + string.Join(", ", input));
				Console.WriteLine("Output: " + string.Join(", ", output));
			}
			static int compute(int value)
			{
				
				Console.WriteLine($"Computing value: {value} on thread: {Task.CurrentId}");
				Task.Delay(100).Wait();  
				return value * value;
			}
		}
	}
4.7 流水线并行(Pipeline Parallelism)
流水线并行将任务分解为一系列阶段,每个阶段由不同处理器或线程处理,形成处理流水线。适用于数据流处理和视频编码等场景。
代码示例:
using System;
using System.Threading.Tasks;
namespace PipelineParallelExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			string input = "Initial Data";
			
			string finalOutput = await StartPipeline(input);
			
			Console.WriteLine($"Final Output: {finalOutput}");
		}
		static async Task<string> StartPipeline(string input)
		{
			
			string stage1Output = await stage1(input);
			
			string stage2Output = await stage2(stage1Output);
			
			string finalOutput = await stage3(stage2Output);
			return finalOutput;
		}
		static async Task<string> stage1(string input)
		{
			Console.WriteLine($"Stage 1 started with input: {input}");
			
			await Task.Delay(1000);
			string intermediate1 = $"Stage1: Processed {input}";
			Console.WriteLine($"Stage 1 completed with output: {intermediate1}");
			return intermediate1;
		}
		static async Task<string> stage2(string intermediate1)
		{
			Console.WriteLine($"Stage 2 started with input: {intermediate1}");
			
			await Task.Delay(1000);
			string intermediate2 = $"Stage2: Processed {intermediate1}";
			Console.WriteLine($"Stage 2 completed with output: {intermediate2}");
			return intermediate2;
		}
		static async Task<string> stage3(string intermediate2)
		{
			Console.WriteLine($"Stage 3 started with input: {intermediate2}");
			
			await Task.Delay(1000);
			string output = $"Stage3: Processed {intermediate2}";
			Console.WriteLine($"Stage 3 completed with output: {output}");
			return output;
		}
	}
}
4.8 Actor模型
Actor模型是一种并发计算模型,通过将系统分解为独立执行的Actor来实现并发和并行。每个Actor可以通过消息传递与其他演员通信,避免共享内存和锁的使用。常见的Actor模型有Orleans、Akka、Erlang等。
代码示例:
using System;
using System.Threading.Tasks;
using Akka.Actor;
namespace ActorModelExample
{
	class Program
	{
		static async Task Main(string[] args)
		{
			
			var system = ActorSystem.Create("ActorSystem");
			
			var actor1 = system.ActorOf(Props.Create(() => new Actor1(system)), "Actor1");
			var actor2 = system.ActorOf(Props.Create(() => new Actor2(system)), "Actor2");
			
			actor1.Tell(new PingMessage(actor2));
			
			await Task.Delay(2000);
			
			actor1.Tell(new StopMessage());
			actor2.Tell(new StopMessage());
			
			await Task.Delay(1000);
			
			await system.Terminate();
		}
	}
	public class PingMessage
	{
		public IActorRef TargetActor { get; }
		public PingMessage(IActorRef targetActor)
		{
			TargetActor = targetActor;
		}
	}
	public class PongMessage
	{
		public IActorRef TargetActor { get; }
		public PongMessage(IActorRef targetActor)
		{
			TargetActor = targetActor;
		}
	}
	public class StopMessage { }
	public class Actor1 : ReceiveActor
	{
		private readonly ActorSystem _system;
		public Actor1(ActorSystem system)
		{
			_system = system;
			Receive<PingMessage>(ping =>
			{
				Console.WriteLine($"Actor1 received Ping from Actor {Sender.Path}");
				ping.TargetActor.Tell(new PongMessage(Self));
			});
			Receive<PongMessage>(pong =>
			{
				Console.WriteLine($"Actor1 received Pong from Actor {pong.TargetActor.Path}");
			});
			Receive<StopMessage>(_ =>
			{
				Console.WriteLine("Actor1 stopping.");
				Context.Stop(Self);
			});
		}
	}
	public class Actor2 : ReceiveActor
	{
		private readonly ActorSystem _system;
		public Actor2(ActorSystem system)
		{
			_system = system;
			Receive<PingMessage>(ping =>
			{
				Console.WriteLine($"Actor2 received Ping from Actor {Sender.Path}");
				ping.TargetActor.Tell(new PongMessage(Self));
			});
			Receive<StopMessage>(_ =>
			{
				Console.WriteLine("Actor2 stopping.");
				Context.Stop(Self);
			});
		}
	}
}
5 实践运用
5.1 软件开发中的并行应用
并行广泛应用于需要高计算能力的场景,包括:
- 科学模拟:天气预报、分子动力学等任务涉及大量方程求解,可通过并行化显著加速。
- 机器学习:深度神经网络训练依赖矩阵运算,TensorFlow和PyTorch等框架利用GPU并行性加速训练过程。
- 图像与视频处理:如3D渲染或视频滤镜应用,可将任务分配到多核或GPU上并行执行。
常见的并行编程模型包括:
- T- PL:TPL是.NET中用于并行编程的一个强大库
- OpenMP:基于指令的共享内存并行API,适用于C/C++和Fortran。
- MPI(消息传递接口):分布式内存并行的标准,用于高性能计算集群。
- CUDA:NVIDIA的并行计算平台,支持GPU上的细粒度并行。
5.2 软件开发中的并发应用
并发在需要处理多任务或事件的系统中至关重要,例如:
- Web服务器:如Apache和Nginx,通过多线程、多进程或事件驱动架构并发处理大量客户端请求。
- 图形用户界面(GUI):并发确保界面在执行后台任务(如数据加载)时仍能响应用户输入。
- 数据库系统:通过锁和事务等并发控制机制,管理多用户对数据的并发访问。
常见的并发模型包括:
- 多线程:C#、Java和C++提供线程库(如System.Thread、java.lang.Thread、std::thread)实现并发。
- 异步编程:Node.js和Python的asyncio支持非阻塞代码,适用于I/O密集型任务。
- Actor模型:Erlang和Akka框架通过独立的Actor单元和消息传递实现并发,避免共享内存问题。
6. 并发与并行编程的挑战
6.1 并发挑战
并发引入了多个复杂问题:
- 竞争条件(Race Conditions):多个线程同时访问共享资源,可能导致不可预测的结果。例如,未同步的计数器递增可能丢失更新。
- 死锁(Deadlocks):线程间相互等待对方释放资源,导致永久阻塞。例如,两个线程各自持有对方需要的锁。
- 活锁(Livelocks):线程不断尝试解决问题但无进展,如反复让出资源。
- 饥饿(Starvation):某些线程因调度不公而无法获得资源。
解决这些问题通常依赖同步原语(如互斥锁、信号量),但过度同步可能降低性能。
6.2 并行挑战
并行计算也有其难点:
- 负载均衡:确保所有处理器或核心均匀分担工作量,避免部分核心空闲。
- 通信开销:分布式系统中,节点间通信成本可能抵消并行收益。
- 可扩展性:随着处理器数量增加,同步开销或串行部分可能导致收益递减。
并行算法需精心设计,采用动态负载均衡或工作窃取等技术应对这些挑战。
7. 管理并行与并发的工具与技术
7.1 调试与测试
并发与并行程序的非确定性使其调试异常困难,常用工具包括:
- 静态分析:如Intel Inspector或FindBugs,可在不运行代码的情况下检测潜在问题。
- 运行时验证:Valgrind的Helgrind等工具在程序运行时监控同步错误。
- 测试框架:JUnit或pytest可扩展用于并发测试,模拟多线程场景。
7.2 设计模式
设计模式为常见问题提供解决方案:
- 线程池:管理固定数量的线程执行任务,减少创建和销毁开销。
- 生产者-消费者:生产者生成数据,消费者处理数据,通过同步队列协调。
- Map-Reduce:将任务映射到数据分片并归约结果,适用于大数据处理。
7.3 编程语言支持
现代语言内置了对并行与并发的支持:
- CSharp:通过TPL和System.Collections.Concurrent等库简化并发和并行编程。
- Go:通过goroutines和通道简化并发编程。
- Rust:通过所有权模型在编译时防止数据竞争。
- Java:提供java.util.concurrent包,包括线程池、并发集合等高级工具。
8.并行与并发的权衡
8.1 复杂度与性能
并行与并发提升性能的同时增加了代码复杂度:
- 多线程:提供细粒度控制,但易引入竞争条件。
- 异步编程:避免线程开销,但可能导致回调地狱或复杂逻辑。
8.2 共享内存与消息传递
并发模型分为两种:
- 共享内存:线程共享数据,需同步以避免冲突,效率高但易出错。
- 消息传递:通过消息通信避免共享状态,安全性高但可能引入延迟。
如何选择取决于性能、安全性和应用需求。
转自https://www.cnblogs.com/chenshibao/p/18865227
该文章在 2025/9/9 10:42:22 编辑过